EconPapers    
Economics at your fingertips  
 

Monitoring multistage processes with autocorrelated observations

Jinho Kim, Myong K. Jeong and Elsayed A. Elsayed

International Journal of Production Research, 2017, vol. 55, issue 8, 2385-2396

Abstract: In multistage manufacturing processes, autocorrelations within stages over time are prevalent and the classical control charts are often ineffective in monitoring such processes. In this paper, we derive a linear state space model of an autocorrelated multistage process as a vector autoregressive process, and construct novel multivariate control charts, CBAM and Conditional-based MEWMA, for detecting the mean changes in a multistage process based on a projection scheme by incorporating in-control stage information. When in-control stages are unknown, finding in-control stages is a challenging issue due to the autocorrelations over time and the sequential correlations between stages. To overcome this difficulty, we propose a conditional-based selection that chooses stages with strong evidences of in-control stage using the cascading property of multistage processes. The information of selected stages is effectively utilised in obtaining powerful test statistics for detecting a mean change. The performance of the proposed charts is compared with other existing procedures under different scenarios. Both simulation studies and a real example show the effectiveness of the conditional-based charts in detecting a wide range of small mean shifts compared with the other existing control charts.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1247996 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:8:p:2385-2396

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1247996

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:8:p:2385-2396