EconPapers    
Economics at your fingertips  
 

Big Data Analytics for Physical Internet-based intelligent manufacturing shop floors

Ray Y. Zhong, Chen Xu, Chao Chen and George Q. Huang

International Journal of Production Research, 2017, vol. 55, issue 9, 2610-2621

Abstract: Physical Internet (PI, π) has been widely used for transforming and upgrading the logistics and supply chain management worldwide. This study extends the PI concept into manufacturing shop floors where typical logistics resources are converted into smart manufacturing objects (SMOs) using Internet of Things (IoT) and wireless technologies to create a RFID-enabled intelligent shop floor environment. In such PI-based environment, enormous RFID data could be captured and collected. This study introduces a Big Data Analytics for RFID logistics data by defining different behaviours of SMOs. Several findings are significant. It is observed that task weight is primarily considered in the logistics decision-making in this case. Additionally, the highest residence time occurs in a buffer with the value of 12.17 (unit of time) which is 40.57% of the total delivery time. That implies the high work-in-progress inventory level in this buffer. Key findings and observations are generated into managerial implications, which are useful for various users to make logistics decisions under PI-enabled intelligent shop floors.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2015.1086037 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:9:p:2610-2621

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2015.1086037

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:9:p:2610-2621