Design and control of manufacturing systems: a discrete event optimisation methodology
Giulia Pedrielli,
Andrea Matta,
Arianna Alfieri and
Mengyi Zhang
International Journal of Production Research, 2018, vol. 56, issue 1-2, 543-564
Abstract:
Simulation optimisation has gained a great attention due to its success in the design of complex manufacturing systems. In this paper, we look at manufacturing as a special class of queueing systems and propose the Discrete Event Optimisation (DEO) methodology, which provides a formal way to develop integrated mathematical models for the simultaneous simulation and optimisation. In the case, the obtained model is a mixed integer linear programming model; the methodology provides a formal way to generate approximations of them. The analytical properties of DEO models are analysed for the first time in the framework of sample path optimisation and mathematical programming. The methodology represents a reference for the use of mathematical programming as a way to model simulation optimisation for queueing systems. The applicability of the DEO methodology to complex problems is showed using the task and buffer allocation problem in a production line.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1412532 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:1-2:p:543-564
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1412532
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().