Redundant configuration of robotic assembly lines with stochastic failures
Christoph Müller,
Martin Grunewald and
Thomas Stefan Spengler
International Journal of Production Research, 2018, vol. 56, issue 10, 3662-3682
Abstract:
One of the main challenges in the operation of robotic assembly lines is the occurrence of failures. Due to the connection of the stations via a material handling system, failures at one station often result in throughput losses. To some extent, these throughput losses can be reduced by installing buffers between the stations. However, the installation of buffers requires considerable investments and scarce factory space. Due to the advances of manufacturing technologies that form the foundation of ‘Industry 4.0’, new solutions to reduce failure-related throughput losses open up. One solution is a redundant configuration, in which downstream (backup) stations automatically take over the operations of failed stations during repair time. The throughput loss in these situations depends on the allocation of operations and the assignment of backup stations. Existing approaches in the literature that consider redundancies in the configuration of automated lines neglect the resulting production rate. Instead, the lines’ level of redundancy is used as a surrogate measure for optimisation. We present a genetic algorithm for the redundant configuration of robotic assembly lines with stochastic failures to maximise the production rate of the line. In a numerical analysis, it is demonstrated that this approach allows for productivity improvements.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1406672 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:10:p:3662-3682
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1406672
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().