Complexity reduction and kaizen events to balance manual assembly lines: an application in the field
Violetta Giada Cannas,
Margherita Pero,
Rossella Pozzi and
Tommaso Rossi
International Journal of Production Research, 2018, vol. 56, issue 11, 3914-3931
Abstract:
Notwithstanding the existence of a broad research base on assembly line balancing (ALB), companies do not use the mathematical approaches developed in the literature to configure assembly lines. This article aims to fill the gap between research and application by presenting and testing in a real industrial context a methodology based on complexity reduction and kaizen events. First, the methodology supports reducing the complexity that affects real-life assembly systems in terms of the variety of, e.g. finished products, materials and parts. Next, the methodology proposes the conduction of kaizen events by using lean manufacturing tools, such as process analysis, time observation, waste identification, workstation standard documents and yamazumi charts. The methodology is successfully applied to a case study that describes its use in the confectionery process for a major chocolatier company along with the results of the application. The main contribution of this paper consists in presenting a method to manage the line balancing activity within everyday industrial realities, helping practitioners to improve and maintain the performance over time.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1427898 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:11:p:3914-3931
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1427898
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().