EconPapers    
Economics at your fingertips  
 

Product failure prediction with missing data

Seokho Kang, Eunji Kim, Jaewoong Shim, Wonsang Chang and Sungzoon Cho

International Journal of Production Research, 2018, vol. 56, issue 14, 4849-4859

Abstract: In production data, missing values commonly appear for several reasons including changes in measurement and inspection items, sampling inspections, and unexpected process events. When applied to product failure prediction, the incompleteness of data should be properly addressed to avoid performance degradation in prediction models. Well-known approaches for missing data treatment, such as elimination and imputation, would not perform well under usual scenarios in production data, including high missing rate, systematic missing and class imbalance. To address these limitations, here we present a method for predictive modelling with missing data by considering the characteristics of production data. It builds multiple prediction models on different complete data subsets derived from the original data-set, each of which has different coverage of instances and input variables. These models are selectively used to make predictions for new instances with missing values. We demonstrate the effectiveness of the proposed method through a case study using actual data-sets from a home appliance manufacturer.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1407883 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:14:p:4849-4859

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1407883

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:14:p:4849-4859