Prognostics of slow speed bearings using a composite integrated Gaussian process regression model
Sylvester A. Aye and
P. Stephan Heyns
International Journal of Production Research, 2018, vol. 56, issue 14, 4860-4873
Abstract:
Prognostics of manufacturing systems enables improved maintenance scheduling and cost reduction through reduced downtime, improved allocation of maintenance resources and reduced consequential costs of breakdowns. Prognostics are necessary for predictive maintenance of bearings in manufacturing systems. The findings show that in general the composite integrated GPR models perform better than the simple mean simple covariance GPR models, irrespective of whether the training or test sets are dependent or independent. In this investigation the Affine Mean GPR (AMGPR) was found to be the most effective prognostic model for prognostics of slow speed bearings on both dependent and independent data samples.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1470340 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:14:p:4860-4873
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1470340
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().