A coordinated algorithm for integrated production scheduling and vehicle routing problem
Xuxia Zou,
Ling Liu,
Kunpeng Li and
Wenli Li
International Journal of Production Research, 2018, vol. 56, issue 15, 5005-5024
Abstract:
In this paper, the integrated production scheduling and vehicle routing problem is considered for a Make-to-Order manufacturer, who has a single machine for production and limited vehicles with capacity constraints for transportation. The objective is to determine production scheduling and vehicle routing, which are two interacted decisions, to minimise the maximum order delivery time. A property on optimal production sequence is proposed first, based on which backward and forward batching methods are developed and are embedded into a proposed genetic algorithm. The proposed genetic algorithm is capable of providing high-quality solutions by determining the two decisions simultaneously. For comparison purpose, a two-stage algorithm is developed, which decomposes the overall problem into two successively solved sub-problems. The experiments show that the proposed genetic algorithm can provide higher quality solutions than the proposed two-stage algorithm and two published algorithms studying related problems.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1378955 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:15:p:5005-5024
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1378955
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().