Hybrid modelling of MTO/ETO manufacturing environments for performance assessment
Cátia Barbosa and
Américo Azevedo
International Journal of Production Research, 2018, vol. 56, issue 15, 5147-5171
Abstract:
Performance assessment is critical in today’s competitive environments, where companies need to establish trade-offs between key competitive dimensions. The complexity of these environments calls for new approaches to performance assessment. Thus, in this work, we propose a novel conceptual framework for performance assessment in manufacturing environments combining different production strategies. Focus is laid on MTO/ETO combined environments and a three-stage problem analysis is considered. Firstly, a hybrid SD-DES-ABS model approach addresses the needs of a system that handles different types of orders, processes and workforce allocation requirements; secondly, the model results for different demand scenarios are assessed using a one-way ANOVA analysis followed by a Tukey – Kramer’s test, with pairwise comparisons for assessment of significant performance variations under different system operating policies. A full factorial Design of Experiments (DOE) analysis follows, for determining the relevant process parameters influencing the system performance. As an example of application of the proposed framework, we consider the case of an advanced manufacturing company, whose manufacturing environment encompasses combined MTO/ETO production strategies.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1421788 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:15:p:5147-5171
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1421788
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().