EconPapers    
Economics at your fingertips  
 

A hybrid artificial bee colony algorithm for a flexible job shop scheduling problem with overlapping in operations

Tao Meng, Quan-Ke Pan and Hong-Yan Sang

International Journal of Production Research, 2018, vol. 56, issue 16, 5278-5292

Abstract: Overlapping in operations is an effective technology for productivity improvement in modern manufacturing systems. Thus far, however, there are still rare works on flexible job shop scheduling problems (FJSPs) concerning this strategy. In this paper, we present a hybrid artificial bee colony (hyABC) algorithm to minimise the total flowtime for a FJSP with overlapping in operations. In the proposed hyABC, a dynamic scheme is introduced to fine-tune the search scope adaptively. In view of poor exploitation ability of artificial bee colony algorithm, a modified migrating birds optimisation algorithm (MMBO) is developed and integrated into the search process for better balancing global exploration and local exploitation. In MMBO, a forward share strategy with one-job based crossover is designed to make good use of valuable information from behind solutions. Besides, an improved downward share scheme is adopted to increase diversification of the population, and thus alleviate the premature convergence. Extensive experiments based on benchmark instances with different scales are carried out and comparisons with other recent algorithms identify the effectiveness of the proposed hyABC.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1467575 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5278-5292

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1467575

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5278-5292