Cross-docking truck scheduling with product unloading/loading constraints based on an improved particle swarm optimisation algorithm
Yan Ye,
Jingfeng Li,
Kaibin Li and
Hui Fu
International Journal of Production Research, 2018, vol. 56, issue 16, 5365-5385
Abstract:
Cross-docking is a very useful logistics technique that can substantially reduce distribution costs and improve customer satisfaction. A key problem in its success is truck scheduling, namely, decision on assignment and docking sequence of inbound/outbound trucks to receiving/shipping dock doors. This paper focuses on the problem with the requirement of unloading/loading products in a given order, which is very common in many industries, but is less concerned by existing researches. An integer programming model is established to minimise the makespan. An improved particle swarm optimisation (ωc-PSO) algorithm is proposed for solving it. In the algorithm, a cosine decreasing strategy of inertia weight is designed to dynamically balance global and local search. A repair strategy is put forward for continuous search in the feasible solution space and a crossover strategy is presented to prevent the algorithm from falling into local optimum. After algorithm parameters are tuned using Taguchi method, computational experiments are conducted on different problem scales to evaluate ωc-PSO against genetic algorithm, basic PSO and GLNPSO. The results show that ωc-PSO outperforms other three algorithms, especially when the number of dock doors, trucks and product types is great. Statistical tests show that the performance difference is statistically significant.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1464678 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5365-5385
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1464678
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().