Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions
Chaoqun Duan,
Chao Deng,
Abolfazl Gharaei,
Jun Wu and
Bingran Wang
International Journal of Production Research, 2018, vol. 56, issue 23, 7160-7178
Abstract:
Many systems are required to perform a series of missions with finite breaks between any two consecutive missions. To improve the probability of system successfully completing the next mission, maintenance action is carried out on components during the breaks. In this work, a selective maintenance model with stochastic maintenance quality for multi-component systems is investigated. At each scheduled break, a set of maintenance actions with different degrees of impact are available for each component. The impact of a maintenance action is assumed to be random and follow an identified probability distribution. The corresponding maintenance cost and time are modelled based on the expected impact of the maintenance action. The objective of selective maintenance scheduling is to find the cost-optimal maintenance action for each component at every scheduled break subject to reliability and duration constraints. A simulated annealing algorithm is used to solve the complicated optimisation problem where both multiple maintenance actions and stochastic quality model are taken into account. Two illustrative numerical examples and a real case study have been solved to demonstrate the performance of the proposed approach. A comparison with deterministic maintenance shows the importance of considering the proposed stochastic quality in selective maintenance scheduling.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1436789 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:23:p:7160-7178
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1436789
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().