A new distribution-free model for disassembly line balancing problem with stochastic task processing times
Feifeng Zheng,
Junkai He,
Feng Chu and
Ming Liu
International Journal of Production Research, 2018, vol. 56, issue 24, 7341-7353
Abstract:
Effective conduct with End of Life (EOL) products is a hot research topic in green and smart manufacturing. For EOL product recycling and remanufacturing, a fundamental problem is to design an efficient disassembly line under consideration of stochastic task processing times. This problem focuses on selecting alternative task processes, determining the number of opened workstations, and assigning operational tasks to the workstations. The goal is to minimise the total cost consisting of workstation operational cost and hazardous component processing cost. Most existing works assume that the probability distribution of task processing times can be estimated, however, it is often not likely to access the complete probability distribution due to various difficulties. Therefore, this study investigates disassembly line design with the assumption that only the mean, standard deviation and an upper bound of task processing times are known. Our main contributions include: (i) a new decomposition color graph is proposed to intuitively describe all possible processes, (ii) a new distribution-free model is proposed, and (iii) some problem properties are established to solve the model. Experimental results show that the distribution-free model can effectively deal with stochastic task processing times without given probability distributions.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1430909 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:24:p:7341-7353
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1430909
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().