A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation
Lixia Zhu,
Zeqiang Zhang and
Yi Wang
International Journal of Production Research, 2018, vol. 56, issue 24, 7354-7374
Abstract:
The safety hazards existing in the process of disassembling waste products pose potential harms to the physical and mental health of the workers. In this article, these hazards involved in the disassembly operations are evaluated and taken into consideration in a disassembly line balancing problem. A multi-objective mathematical model is constructed to minimise the number of workstations, maximise the smoothing rate and minimise the average maximum hazard involved in the disassembly line. Subsequently, a Pareto firefly algorithm is proposed to solve the problem. The random key encoding method based on the smallest position rule is used to adapt the firefly algorithm to tackle the discrete optimisation problem of the disassembly line balancing. To avoid the search being trapped in a local optimum, a random perturbation strategy based on a swap operation is performed on the non-inferior solutions. The validity of the proposed algorithm is tested by comparing with two other algorithms in the existing literature using a 25-task phone disassembly case. Finally, the proposed algorithm is applied to solve a refrigerator disassembly line problem based on the field investigation and a comparison of the proposed Pareto firefly algorithm with another multi-objective firefly algorithm in the existing literature is performed to further identify the superior performance of the proposed Pareto firefly algorithm, and eight Pareto optimal solutions are obtained for decision makers to make a decision.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1471238 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:24:p:7354-7374
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1471238
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().