Models, algorithms and performance analysis for adaptive operating room scheduling
Guanlian Xiao,
Willem van Jaarsveld,
Ming Dong and
Joris van de Klundert
International Journal of Production Research, 2018, vol. 56, issue 4, 1389-1413
Abstract:
The complex optimisation problems arising in the scheduling of operating rooms have received considerable attention in recent scientific literature because of their impact on costs, revenues and patient health. For an important part, the complexity stems from the stochastic nature of the problem. In practice, this stochastic nature often leads to schedule adaptations on the day of schedule execution. While operating room performance is thus importantly affected by such adaptations, decision-making on adaptations is hardly addressed in scientific literature. Building on previous literature on adaptive scheduling, we develop adaptive operating room scheduling models and problems, and analyse the performance of corresponding adaptive scheduling policies. As previously proposed (fully) adaptive scheduling models and policies are infeasible in operating room scheduling practice, we extend adaptive scheduling theory by introducing the novel concept of committing. Moreover, the core of the proposed adaptive policies with committing is formed by a new, exact, pseudo-polynomial algorithm to solve a general class of stochastic knapsack problems. Using these theoretical advances, we present performance analysis on practical problems, using data from existing literature as well as real-life data from the largest academic medical centre in The Netherlands. The analysis shows that the practically feasible, basic, 1-level policy already brings substantial and statistically significant improvement over static policies. Moreover, as a rule of thumb, scheduling surgeries with large mean duration or standard deviation early appears good practice.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1328140 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1389-1413
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1328140
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().