A bi-objective robust inspection planning model in a multi-stage serial production system
M. Mohammadi,
J.-Y. Dantan,
A. Siadat and
R. Tavakkoli-Moghaddam
International Journal of Production Research, 2018, vol. 56, issue 4, 1432-1457
Abstract:
In this paper, we present a bi-objective mixed-integer linear programming (BOMILP) model for planning an inspection process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system. The model involves two inter-related decisions: (1) which quality characteristics need what kind of inspections (i.e. which-what decision) and (2) when the inspection of these characteristics should be performed (i.e. when decision). These decisions require a trade-off between the cost of manufacturing (i.e. production, inspection and scrap costs) and the customer satisfaction. Due to inevitable variations in manufacturing systems, a global robust BOMILP (RBOMILP) is developed to tackle the inherent uncertainty of the concerned parameters (i.e. production and inspection times, errors type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automotive industry in France.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1363425 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1432-1457
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1363425
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().