EconPapers    
Economics at your fingertips  
 

An effective genetic algorithm for the resource levelling problem with generalised precedence relations

Hongbo Li, Li Xiong, Yinbin Liu and Haitao Li

International Journal of Production Research, 2018, vol. 56, issue 5, 2054-2075

Abstract: Resource levelling aims to obtain a feasible schedule to minimise the resource usage fluctuations during project execution. It is of crucial importance in project scheduling to ensure the effective use of scarce and expensive renewable resources, and has been successfully applied to production environments, such as make-to-order and engineering-to-order systems. In real-life projects, general temporal relationships are often needed to model complex time-dependencies among activities. We develop a novel genetic algorithm (GA) for the resource levelling problem with generalised precedence relations. Our design and implementation of GA features an efficient schedule generation scheme, built upon a new encoding mechanism that combines the random key representation and the shift vector representation. A two-pass local search-based improvement procedure is devised and integrated into the GA to enhance the algorithmic performance. Our GA is able to obtain near optimal solutions with less than 2% optimality gap for small instances in fractions of a second. It outperforms or is competitive with the state-of-the-art algorithms for large benchmark instances with size up to 1000 activities.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1355120 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:5:p:2054-2075

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1355120

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:5:p:2054-2075