EconPapers    
Economics at your fingertips  
 

A memetic algorithm for multi-objective flexible job-shop problem with worker flexibility

Xuran Gong, Qianwang Deng, Guiliang Gong, Wei Liu and Qinghua Ren

International Journal of Production Research, 2018, vol. 56, issue 7, 2506-2522

Abstract: In existing scheduling models, the flexible job-shop scheduling problem mainly considers machine flexibility. However, human factor is also an important element existing in real production that is often neglected theoretically. In this paper, we originally probe into a multi-objective flexible job-shop scheduling problem with worker flexibility (MO-FJSPW). A non-linear integer programming model is presented for the problem. Correspondingly, a memetic algorithm (MA) is designed to solve the proposed MO-FJSPW whose objective is to minimise the maximum completion time, the maximum workload of machines and the total workload of all machines. A well-designed chromosome encoding/decoding method is proposed and the adaptive genetic operators are selected by experimental studies. An elimination process is executed to eliminate the repeated individuals in population. Moreover, a local search is incorporated into the non-dominated sorting genetic algorithm II. In experimental phase, the crossover operator and elimination operator in MA are examined firstly. Afterwards, some extensive comparisons are carried out between MA and some other multi-objective algorithms. The simulation results show that the MA performs better for the proposed MO-FJSPW than other algorithms.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1388933 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:7:p:2506-2522

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1388933

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:7:p:2506-2522