Design and application of Internet of things-based warehouse management system for smart logistics
C.K.M. Lee,
Yaqiong Lv,
K.K.H. Ng,
William Ho and
K.L. Choy
International Journal of Production Research, 2018, vol. 56, issue 8, 2753-2768
Abstract:
Warehouse operations need to change due to the increasing complexity and variety of customer orders. The demand for real-time data and contextual information is requried because of the highly customised orders, which tend to be of small batch size but with high variety. Since the orders frequently change according to customer requirements, the synchronisation of purchase orders to support production to ensure on-time order fulfilment is of high importance. However, the inefficient and inaccurate order picking process has adverse effects on the order fulfilment. The objective of this paper is to propose an Internet of things (IoT)-based warehouse management system with an advanced data analytical approach using computational intelligence techniques to enable smart logistics for Industry 4.0. Based on the data collected from a case company, the proposed IoT-based WMS shows that the warehouse productivity, picking accuracy and efficiency can be improved and it is robust to order variability.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1394592 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:8:p:2753-2768
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1394592
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().