EconPapers    
Economics at your fingertips  
 

A new belief Markov chain model and its application in inventory prediction

Zichang He and Wen Jiang

International Journal of Production Research, 2018, vol. 56, issue 8, 2800-2817

Abstract: The Markov chain model is widely applied in many fields, especially the field of prediction. The discrete-time Markov chain (DTMC) is a common method for prediction. However, the classical DTMC model has some limitations when the system is complex with uncertain information or state space is not discrete. To address it, a new belief Markov chain (BMC) model combining Dempster-Shafer evidence theory and the DTMC is proposed. In our model, the uncertain data are allowed to be handled in the form of interval number, and the basic probability assignment is generated by an optimisation method based on the distance between interval numbers. The shortcoming of classical DTMC is overcome in the BMC model. Also, it has an efficient ability of dealing with uncertain information, including both the uncertainty of collected data and discerning states. Our model is applied to do the prediction of inventory demand and the result is close to the practical. Also, sensitivity analysis and some comparisons are accomplished to show the effectiveness and rationality of our proposed model.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1405166 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:8:p:2800-2817

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1405166

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:8:p:2800-2817