EconPapers    
Economics at your fingertips  
 

One- and two-sided assembly line balancing problems with real-world constraints

Margaretha Gansterer and Richard F. Hartl

International Journal of Production Research, 2018, vol. 56, issue 8, 3025-3042

Abstract: In this study, we consider balancing problems of one- and two-sided assembly lines with real-world constraints like task or machine incompatibilities. First, we study the one-sided assembly line balancing problem (ALBP) with a limited number of machine types per workstation. Using a genetic algorithm (GA), we find optimal results for real-world instances. A set of larger test cases is used to compare two well-established solution approaches, namely GA and tabu search (TS). Additionally, we apply a specific differential evolution algorithm (DE), which has recently been proposed for the considered ALBP. Our computational results show that DE is clearly dominated by GA. Furthermore, we show that GA outperforms TS in terms of computational time, if capacity constraints are tight. Given the algorithm’s computational performance as well as the fact that it can easily be adapted to additional constraints, we then use it to solve two-sided ALBP. Three types of constraints and two different objectives are considered. We outperform all previously published methods in terms of solution quality and computational time. Finally, we are the first to provide feasible test instances as well as benchmark results for fully constrained two-sided ALB.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1394599 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:8:p:3025-3042

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1394599

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:8:p:3025-3042