EconPapers    
Economics at your fingertips  
 

Spatial scheduling strategy for irregular curved blocks based on the modified genetic ant colony algorithm (MGACA) in shipbuilding

Yan Ge and Aimin Wang

International Journal of Production Research, 2018, vol. 56, issue 9, 3099-3115

Abstract: This paper proposes a scheduling strategy for irregular curved blocks to address the complex spatiotemporal coupling scheduling problem related to the entered time, the entered sequence, the setting positions and the rotated angles for the curved blocks in a shipbuilding yard. The strategy presents a makespan-based curved blocks – classification and selection rule to fulfil the programming time for the entry of the curved blocks into the workplace and realises the suppression on the delay. Useless stepping search of curved blocks in occupied workplace is avoided by combining the lowest centre-of-gravity rule with the calculation method of the remained workplace proposed in this paper. A modified genetic ant colony algorithm was proposed, which apply the ease to premature characteristics of GA and the excellent local optimisation ability of ACO, to let and promote the algorithm falls into local optimum. Then the large-scale and full-range mutation will be implemented to make the algorithm jump out of the original local optimisation to search more local optimal solutions so that the global optimal solution can be achieved. Finally, a software system for algorithm verification was developed which conducts the comparative analysis of the algorithms and verifies the validity of the algorithm proposed.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1402135 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3099-3115

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1402135

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3099-3115