Robotic disassembly sequence planning using enhanced discrete bees algorithm in remanufacturing
Jiayi Liu,
Zude Zhou,
Duc Truong Pham,
Wenjun Xu,
Chunqian Ji and
Quan Liu
International Journal of Production Research, 2018, vol. 56, issue 9, 3134-3151
Abstract:
Increasing attention is being paid to remanufacturing due to environmental protection and resource saving. Disassembly, as an essential step of remanufacturing, is always manually finished which is time-consuming while robotic disassembly can improve disassembly efficiency. Before the execution of disassembly, generating optimal disassembly sequence plays a vital role in improving disassembly efficiency. In this paper, to minimise the total disassembly time, an enhanced discrete Bees algorithm (EDBA) is proposed to solve robotic disassembly sequence planning (RDSP) problem. Firstly, the modified feasible solution generation (MFSG) method is used to build the disassembly model. After that, the evaluation criterions for RDSP are proposed to describe the total disassembly time of a disassembly sequence. Then, with the help of mutation operator, EDBA is proposed to determine the optimal disassembly sequence of RDSP. Finally, case studies based on two gear pumps are used to verify the effectiveness of the proposed method. The performance of EDBA is analysed under different parameters and compared with existing optimisation algorithms used in disassembly sequence planning (DSP). The result shows the proposed method is more suitable for robotic disassembly than the traditional method and EDBA generates better quality of solutions compared with the other optimisation algorithms.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1412527 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3134-3151
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1412527
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().