EconPapers    
Economics at your fingertips  
 

A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times

Melissa Shahgholi Zadeh, Yalda Katebi and Ali Doniavi

International Journal of Production Research, 2019, vol. 57, issue 10, 3020-3035

Abstract: In real scheduling problems, unexpected changes may occur frequently such as changes in task features. These changes cause deviation from primary scheduling. In this article, a heuristic model, inspired from Artificial Bee Colony algorithm, is proposed for a dynamic flexible job-shop scheduling (DFJSP) problem. This problem consists of n jobs that should be processed by m machines and the processing time of jobs deviates from estimated times. The objective is near-optimal scheduling after any change in tasks in order to minimise the maximal completion time (Makespan). In the proposed model, first, scheduling is done according to the estimated processing times and then re-scheduling is performed after determining the exact ones considering machine set-up. In order to evaluate the performance of the proposed model, some numerical experiments are designed in small, medium and large sizes in different levels of changes in processing times and statistical results illustrate the efficiency of the proposed algorithm.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1524165 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:10:p:3020-3035

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1524165

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:10:p:3020-3035