Ant colony optimisation algorithms for two-stage permutation flow shop with batch processing machines and nonidentical job sizes
Xu Zheng,
Shengchao Zhou and
Huaping Chen
International Journal of Production Research, 2019, vol. 57, issue 10, 3060-3079
Abstract:
This paper focuses on minimising the maximum completion time for the two-stage permutation flow shop scheduling problem with batch processing machines and nonidentical job sizes by considering blocking, arbitrary release times, and fixed setup and cleaning times. Two hybrid ant colony optimisation algorithms, one based on job sequencing (JHACO) and the other based on batch sequencing (BHACO), are proposed to solve this problem. First, max-min pheromone restriction rules and a local optimisation rule are embedded into JHACO and BHACO, respectively, to avoid trapping in local optima. Then, an effective lower bound is estimated to evaluate the performances of the different algorithms. Finally, the Taguchi method is adopted to investigate and optimise the parameters for JHACO and BHACO. The performances of the proposed algorithms are compared with that of CPLEX on small-scale instances and those of a hybrid genetic algorithm (HGA) and a hybrid discrete differential evolution (HDDE) algorithm on full-scale instances. The computational results demonstrate that BHACO outperforms JHACO, HDDE and HGA in terms of solution quality. Besides, JHACO strikes a balance between solution quality and run time.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1529445 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:10:p:3060-3079
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1529445
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().