Optimising online review inspired product attribute classification using the self-learning particle swarm-based Bayesian learning approach
Lohithaksha M. Maiyar,
SangJe Cho,
Manoj Kumar Tiwari,
Klaus-Dieter Thoben and
Dimitris Kiritsis
International Journal of Production Research, 2019, vol. 57, issue 10, 3099-3120
Abstract:
Bowing to the burgeoning needs of online consumers, exploitation of social media content for extrapolating buyer-centric information is gaining increasing attention of researchers and practitioners from service science, data analytics, machine learning and associated domains. The current paper aims to identify the structural relationship between product attributes and subsequently prioritise customer preferences with respect to these attributes while exploiting textual social media data derived from fashion blogs in Germany. A Bayesian Network Structure Learning model with the K2score maximisation objective is formulated and solved. A self-tailored metaheuristic approach that combines self-learning particle swarm optimisation (SLPSO) with the K2 algorithm (SLPSOK2) is employed to decipher the highest scored structures. The proposed approach is implemented on small, medium and large size instances consisting of 9 fashion attributes and 18 problem sets. The results obtained by SLPSOK2 are compared with the particle swarm optimisation/K2score, Genetic Algorithm/K2 score and ant colony optimisation/K2 score. Results verify that SLPSOK2 outperforms its hybrid counterparts for the tested cases in terms of computational time and solution quality. Furthermore, the study reveals that psychological satisfaction, historical revival, seasonal information and facts and figure-based reviews are major components of information in fashion blogs that influence the customers.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1535724 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:10:p:3099-3120
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1535724
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().