Extracting priority rules for dynamic multi-objective flexible job shop scheduling problems using gene expression programming
Gurkan Ozturk,
Ozan Bahadir and
Aydin Teymourifar
International Journal of Production Research, 2019, vol. 57, issue 10, 3121-3137
Abstract:
In this paper, two new approaches are proposed for extracting composite priority rules for scheduling problems. The suggested approaches use simulation and gene expression programming and are able to evolve specific priority rules for all dynamic scheduling problems in accordance with their features. The methods are based on the idea that both the proper design of the function and terminal sets and the structure of the gene expression programming approach significantly affect the results. In the first proposed approach, modified and operational features of the scheduling environment are added to the terminal set, and a multigenic system is used, whereas in the second approach, priority rules are used as automatically defined functions, which are combined with the cellular system for gene expression programming. A comparison shows that the second approach generates better results than the first; however, all of the extracted rules yield better results than the rules from the literature, especially for the defined multi-objective function consisting of makespan, mean lateness and mean flow time. The presented methods and the generated priority rules are robust and can be applied to all real and large-scale dynamic scheduling problems.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1543964 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:10:p:3121-3137
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1543964
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().