EconPapers    
Economics at your fingertips  
 

A probability guided evolutionary algorithm for multi-objective green express cabinet assignment in urban last-mile logistics

Shou-feng Ji, Rong-juan Luo and Xiao-shuai Peng

International Journal of Production Research, 2019, vol. 57, issue 11, 3382-3404

Abstract: In the past decade, urban last-mile logistics (ULML) has attracted increasing attention with the growth of e-commerce. Under this background, express cabinet has been gradually advocated to improve the efficiency of ULML. This paper focuses on the multi-objective green express cabinet assignment problem (MGECAP) in ULML, where the objectives to be minimised are the total cost and the energy consumption. MGECAP is concerned with optimising the purchase and assignment decision of express cabinets, which is different from conventional assignment problems. To solve MGECAP, firstly, the integer programming model and the corresponding surrogate model are established. Secondly, problem-dependent heuristics, including the solution representation, genetic operators, and repair strategy of infeasible solutions, are proposed. Thirdly, a probability guided multi-objective evolutionary algorithm based on decomposition (PG-MOEA/D) is proposed, which can balance the limited computation resource among sub-problems during the iterative process. Meanwhile, a feedback strategy is put forward to alternatively generate new solutions when the probability condition is not satisfied. Finally, numerical results and a real-life case study demonstrate the effectiveness and the practical values of the PG-MOEA/D.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1533653 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:11:p:3382-3404

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1533653

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:11:p:3382-3404