Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments
Paolo Priore,
Borja Ponte,
Rafael Rosillo and
David de la Fuente
International Journal of Production Research, 2019, vol. 57, issue 11, 3663-3677
Abstract:
Firms currently operate in highly competitive scenarios, where the environmental conditions evolve over time. Many factors intervene simultaneously and their hard-to-interpret interactions throughout the supply chain greatly complicate decision-making. The complexity clearly manifests itself in the field of inventory management, in which determining the optimal replenishment rule often becomes an intractable problem. This paper applies machine learning to help managers understand these complex scenarios and better manage the inventory flow. Building on a dynamic framework, we employ an inductive learning algorithm for setting the most appropriate replenishment policy over time by reacting to the environmental changes. This approach proves to be effective in a three-echelon supply chain where the scenario is defined by seven variables (cost structure, demand variability, three lead times, and two partners’ inventory policy). Considering four alternatives, the algorithm determines the best replenishment rule around 88% of the time. This leads to a noticeable reduction of operating costs against static alternatives. Interestingly, we observe that the nodes are much more sensitive to inventory decisions in the lower echelons than in the upper echelons of the supply chain.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1552369 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:11:p:3663-3677
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1552369
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().