EconPapers    
Economics at your fingertips  
 

Service-oriented robust parallel machine scheduling

Ming Liu, Xin Liu, Feng Chu, Feifeng Zheng and Chengbin Chu

International Journal of Production Research, 2019, vol. 57, issue 12, 3814-3830

Abstract: Stochastic scheduling optimisation is a hot and challenging research topic with wide applications. Most existing works on stochastic parallel machine scheduling address uncertain processing time, and assume that its probability distribution is known or can be correctly estimated. This paper investigates a stochastic parallel machine scheduling problem, and assumes that only the mean and covariance matrix of the processing times are known, due to the lack of historical data. The objective is to maximise the service level, which measures the probability of all jobs jointly completed before or at their due dates. For the problem, a new distributionally robust formulation is proposed, and two model-based approaches are developed: (1) a sample average approximation method is adapted, (2) a hierarchical approach based on mixed integer second-order cone programming (MI-SOCP) formulation is designed. To evaluate and compare the performance of the two approaches, randomly generated instances are tested. Computational results show that our proposed MI-SOCP-based hierarchical approach can obtain higher solution quality with less computational effect.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1497311 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3814-3830

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1497311

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3814-3830