Feature-based function block control framework for manufacturing equipment in cloud environments
Göran Adamson,
Lihui Wang and
Philip Moore
International Journal of Production Research, 2019, vol. 57, issue 12, 3954-3974
Abstract:
The ability to adaptively control manufacturing equipment in cloud environments is becoming increasingly more important. Industry 4.0, supported by Cyber Physical Systems and the concept of on-demand, scalable and pay-for-usage resource-sharing in cloud environments offers many promises regarding effective and flexible manufacturing. For implementing the concept of manufacturing services in a cloud environment, a cloud control approach for the sharing and control of networked manufacturing resources is required. This paper presents a cloud service-based control approach which has a product perspective and builds on the combination of event-driven IEC 61499 Function Blocks and product manufacturing features. Distributed control is realised through the use of a networked control structure of such Function Blocks as decision modules, enabling an adaptive run-time behaviour. The control approach has been developed and implemented as prototype systems for both local and distributed manufacturing scenarios, in both real and virtual applications. An application scenario is presented to demonstrate the applicability of the control approach. In this scenario, Assembly Feature-Function Blocks for adaptive control of robotic assembly tasks have been used.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1542178 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3954-3974
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1542178
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().