EconPapers    
Economics at your fingertips  
 

Predictive modelling of surface roughness in fused deposition modelling using data fusion

Dazhong Wu, Yupeng Wei and Janis Terpenny

International Journal of Production Research, 2019, vol. 57, issue 12, 3992-4006

Abstract: To realise high quality, additively manufactured parts, real-time process monitoring and advanced predictive modelling tools are crucial for accelerating quality assurance in additive manufacturing. While previous research has demonstrated the effectiveness of physics- and model-based diagnosis and prognosis for additive manufacturing, very little research has been reported on real-time monitoring and predictive modelling of the surface roughness of additively manufactured parts. This paper presents a data fusion approach to predicting surface roughness in fused deposition modelling (FDM) processes. The predictive models are trained using random forests (RFs), support vector regression (SVR), ridge regression (RR), and least absolute shrinkage and selection operator (LASSO). A real-time monitoring system is developed to monitor the health condition of a FDM machine in real-time using multiple sensors. RFs, SVR, RR, and LASSO are demonstrated on the condition monitoring data collected from these sensors. To integrate the data sources, a feature-level data fusion method is introduced. Experimental results have shown that the predictive models trained by the machine learning algorithms are capable of predicting the surface roughness of additively manufacturing parts with very high accuracy. The prediction accuracy can be further improved using the data fusion method.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1505058 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3992-4006

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1505058

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3992-4006