EconPapers    
Economics at your fingertips  
 

RFID-based multi-attribute logistics information processing and anomaly mining in production logistics

Xiaohua Cao, Tiffany Li and Qiang Wang

International Journal of Production Research, 2019, vol. 57, issue 17, 5453-5466

Abstract: Timely collecting logistics information and finding anomalies of material supply plays a critical role in modern manufacturing systems. The problem is how to obtain multi-attribute logistics information of production logistics and build an effective approach for mining anomalies from the huge number of RFID data. The multi-attribute, randomness and various measure units of logistics states further aggravate the problem. In this paper, a novel RFID-based logistics information processing approach is proposed. Firstly, the state features of production logistics is discussed from multi-attribute perspectives including time, location, quantities, sequence and path, and a set of calculating models is set up to process RFID data for getting multi-attribute state data. Furthermore, in case of the randomness and various measure units of state data, a similarity model is presented to unify measure units of state data, and a clustering approach is proposed to divide the huge number of RFID data into different clusters with high close degree for finding out anomalies. Lastly, the experimental results show that the proposed approach can efficiently find out more than 90% of anomalies among production logistics.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1526421 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5453-5466

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1526421

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5453-5466