EconPapers    
Economics at your fingertips  
 

Modelling and optimisation of energy-efficient U-shaped robotic assembly line balancing problems

Zikai Zhang, Qiuhua Tang, Zixiang Li and Liping Zhang

International Journal of Production Research, 2019, vol. 57, issue 17, 5520-5537

Abstract: Within U-shaped assembly lines, the increase of labour costs and subsequent utilisation of robots has led to growing energy consumption, which is the current main expense of auto and electronics industries. However, there are limited researches concerning both energy consumption reduction and productivity improvement on U-shaped robotic assembly lines. This paper first develops a nonlinear multi-objective mixed-integer programming model, reformulates it into a linear form by linearising the multiplication of two binary variables, and then refines the weight of multiple objectives so as to achieve a better approximation of true Pareto frontiers. In addition, Pareto artificial bee colony algorithm (PABC) is extended to tackle this new complex problem. This algorithm stores all the non-dominated solutions into a permanent archive set to keep all the good genes, and selects one solution from this set to overcome the strong local minima. Comparative experiments based on a set of newly generated benchmarks verify the superiority of the proposed PABC over four multi-objective algorithms in terms of generation distance, maximum spread, hypervolume ratio and the ratio of non-dominated solution.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1530479 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5520-5537

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1530479

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5520-5537