Detecting mean increases in zero truncated INAR(1) processes
Cong Li,
Dehui Wang and
Fukang Zhu
International Journal of Production Research, 2019, vol. 57, issue 17, 5589-5603
Abstract:
Count data with zero truncation are common in the production process. It's essential to monitor these data during production flow, production quality control and market management. Most of the previous studies were based on the independent observations assumption. In fact, serial dependence of count data which significantly affects the performance of the control charts exists extensively in practice. Motivated by this, several important first-order integer-valued autoregressive time series processes are used to model the autocorrelated count data with zero truncation. We investigate the effectiveness of three following charts, the combined jumps chart, the exponentially weighted moving average chart and the cumulative sum chart, to detect the upward shifts of the process mean based on these models. A bivariate Markov chain approach could be used to obtain the average run length of these charts. Design recommendations for achieving robustness are provided based on the computation study. An application to product quality complaints data is presented to demonstrate good performances of the charts.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1554274 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5589-5603
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1554274
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().