A Hybrid Discrete Bat Algorithm with Krill Herd-based advanced planning and scheduling tool for the capital goods industry
Sirikarn Chansombat,
Ponnapa Musikapun,
Pupong Pongcharoen and
Christian Hicks
International Journal of Production Research, 2019, vol. 57, issue 21, 6705-6726
Abstract:
Capital goods companies produce high value products such as power plant or ships, which have deep and complex product structures, with components having long process routings. Contracts usually include substantial penalties for late delivery. The high value of items can lead to substantial holding costs. Efficient schedules minimise earliness and tardiness costs and need to satisfy assembly and operation precedence constraints as well as finite capacity. This paper presents the first advanced planning and scheduling (APS) tool for the capital goods industry that uses a Discrete Bat Algorithm (DBA), modified DBA (MDBA) and hybrid DBA with Krill Herd algorithm (HDBK) to optimise schedules. The tool was validated using four data-sets obtained from a collaborating capital goods company. A sequential experimental strategy was adopted. The first experiment identified appropriate parameter settings for the DBA. The second experiment evaluated and compared the performance of the proposed HDBK algorithm with an Artificial Bee Colony, Krill Herd (KH), Modified KH, DBA and MDBA metaheuristics. The experimental results revealed that the HDBK performed best in terms of the minimum penalty cost for all problem sizes and achieved up to a 47.837% reduction in mean total penalty costs of extra-large problem size.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1471240 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:21:p:6705-6726
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1471240
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().