Scenario-based multi-objective robust scheduling for a semiconductor production line
Juan Liu,
Fei Qiao and
Weichang Kong
International Journal of Production Research, 2019, vol. 57, issue 21, 6807-6826
Abstract:
Scheduling problems of semiconductor manufacturing systems (SMS) with the goal of optimising some classical performance indices (NP-hard), tend to be increasingly complicated due to stochastic uncertainties. This paper targets the robust scheduling problem of an SMS with uncertain processing times. A three-stage multi-objective robust optimisation (MORO) approach is proposed, that can collaboratively optimise the performance indices and their robustness measures. In the first stage, this paper studies the scheduling problem in the deterministic environment and obtains feasible scheduling strategies that perform well in four performance indices (the average cycle time (CT), the on-time delivery rate (ODR), the throughput (TP), and the total movement amount of wafers (MOV)). Then, in the second stage, the uncertainties are introduced into the production system. In the third stage, this paper proposes a hybrid method consisting of scenario planning, discrete simulation, and multi-objective optimisation to obtain an approximately and more robust optimal solution from the feasible scheduling strategy set. The proposed MORO approach is tested in a semiconductor experiment production line and makes a full analysis to illustrate the effectiveness of our method. The results show that our MORO is superior concerning the total robustness with multi-objective.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1641234 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:21:p:6807-6826
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1641234
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().