An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system
Jun-qing Li,
Shun-Chang Bai,
Pei-yong Duan,
Hong-yan Sang,
Yu-yan Han and
Zhi-xin Zheng
International Journal of Production Research, 2019, vol. 57, issue 22, 6922-6942
Abstract:
This paper proposes an improved artificial bee colony (IABC) algorithm for addressing the distributed flow shop considering the distance coefficient found in precast concrete production system, with the minimisation of the makespan. In the proposed algorithm, each solution is first represented by a two-dimensional vector, where the first dimensional vector is the factory and the second dimensional vector lists the operation scheduling sequence of each factory. Second, considering the distributed problem feature, a distributed iterated greedy heuristic (DIG) is developed where destruction and construction processes are designed in detail while considering the distributed structures. Third, an efficient population initialisation method that considers the factory workload balance is presented. Then, a local search approach that randomly replaces two factories with two randomly selected jobs and that finds an optimal position for the two inserted operations via the DIG method is proposed. For the canonical ABC algorithm, using the DIG approach, the main three parts are improved, namely, the employee, onlooker, and scout bees. Finally, the proposed algorithm is tested on sets of extended instances based on the well-known benchmarks. Through an analysis of the experimental results, the highly effective proposed IABC algorithm is compared to several efficient algorithms drawn from the literature.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1571687 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:22:p:6922-6942
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1571687
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().