A hybrid adaptive large neighbourhood search for multi-depot open vehicle routing problems
Rahma Lahyani,
Anne-Lise Gouguenheim and
Leandro C. Coelho
International Journal of Production Research, 2019, vol. 57, issue 22, 6963-6976
Abstract:
In this paper we address the multi-depot open vehicle routing problem (MDOVRP), a complex and difficult problem arising in several real-life applications. In the MDOVRP vehicles start from several depots and do not need to return to the depot at the end of their routes. We propose a hybrid adaptive large neighbourhood search algorithm to solve the MDOVRP coupled with improvement procedures yielding a hybrid metaheuristic. The performance of the proposed metaheuristic is assessed on various benchmark instances proposed for this problem and its special cases, containing up to 48 customers (single-depot version) and up to six depots and 288 customers. The computational results indicate that the proposed algorithm is very competitive compared with the state-of-the-art methods and improves 15 best-known solutions for multi-depot instances and one best-known solution for a single-depot instance. A detailed sensitivity analysis highlights which components of the metaheuristic contribute most to the solution quality.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1572929 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:22:p:6963-6976
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1572929
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().