Possibilistic compositions and state functions: application to the order promising process for perishables
H. Grillo,
M.M.E. Alemany,
A. Ortiz and
B. De Baets
International Journal of Production Research, 2019, vol. 57, issue 22, 7006-7031
Abstract:
In this paper, we propose the concepts of the composition of possibilistic variables and state functions. While in conventional compositional data analysis, the interdependent components of a deterministic vector must add up to a specific quantity, we consider such components as possibilistic variables. The concept of state function is intended to describe the state of a dynamic variable over time. If a state function is used to model decay in time, it is called the ageing function. We present a practical implementation of our concepts through the development of a model for a supply chain planning problem, specifically the order promising process for perishables. We use the composition of possibilistic variables to model the existence of different non-homogeneous products in a lot (sub-lots with lack of homogeneity in the product), and the ageing function to establish a shelf life-based pricing policy. To maintain a reasonable complexity and computational efficiency, we propose the procedure to obtain an equivalent interval representation based on α-cuts, allowing to include both concepts by means of linear mathematical programming. Practical experiments were conducted based on data of a Spanish supply chain dedicated to pack and distribute oranges and tangerines. The results validated the functionality of both, the compositions of possibilistic variables and ageing functions, showing also a very good performance in terms of the interpretation of a real problem with a good computational performance.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1574039 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:22:p:7006-7031
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1574039
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().