Developing a selective assembly technique for sheet metal assemblies
Abolfazl Rezaei Aderiani,
Kristina Wärmefjord,
Rikard Söderberg and
Lars Lindkvist
International Journal of Production Research, 2019, vol. 57, issue 22, 7174-7188
Abstract:
Applying the concept of Digital Twin in production processes supports the manufacturing of products of optimal geometry quality. This concept can be further supported by a strategy of finding the optimal combination of individual parts to maximise the geometrical quality of the final product, known as selective assembly technique. However, application of this technique has been limited to assemblies where the final dimensions are just function of the mating parts' dimensions and this is not applicable in sheet metal assemblies. This paper develops a selective assembly technique for sheet metal assemblies and investigates the effect of batch size on the improvements. The presented method utilises a variation simulation tool (Computer-Aided Tolerancing tool) and an optimisation algorithm to find the optimal combination of the mating parts. The approach presented is applied to three industrial cases of sheet metal assemblies. The results show that using this technique leads to a considerable reduction of the final geometrical variation and mean deviation for these kinds of assemblies. Moreover, increasing the batch size reduces the amount of achievable improvement in variation but increases the amount of achievable improvement in the mean deviation.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1581387 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:22:p:7174-7188
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1581387
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().