Simulation to reallocate supply to committed orders under shortage
Ana Esteso,
Josefa Mula,
Francisco Campuzano-Bolarín,
MME Alemany Diaz and
Angel Ortiz
International Journal of Production Research, 2019, vol. 57, issue 5, 1552-1570
Abstract:
This article aims to deal with the reallocating supply problem in both its real and planned contexts, to orders that result from the order promising process under shortage. To this end, we propose a system dynamics-based simulation model to facilitate modelling for order managers, and to provide a graphic support tool to understand the process and to make decisions. The basis of the simulation model’s structure is a mixed-integer linear programming approach that intends to maximise profits by considering the possibility of making partial and delayed deliveries. To illustrate this, we consider a real-world problem from the ceramic sector that contemplates 35 orders. We obtained a solution by a mathematical programming model and a simulation model. The results show the simulation model’s capacity to obtain near-optimum results, and to provide a simulated history of the system.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1493239 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:5:p:1552-1570
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1493239
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().