EconPapers    
Economics at your fingertips  
 

Scenario-based heuristic to two-stage stochastic program for the parallel machine ScheLoc problem

Ming Liu, Xin Liu, E. Zhang, Feng Chu and Chengbin Chu

International Journal of Production Research, 2019, vol. 57, issue 6, 1706-1723

Abstract: Scheduling-Location (ScheLoc) problem is a new and interesting topic in manufacturing, considering location and scheduling decisions simultaneously. Most existing works focus on the deterministic problems. In practice, however, job-processing times are usually uncertain due to some factors. This paper investigates the stochastic parallel machine ScheLoc problem to minimise the weighted sum of the location cost and the expectation of the total completion time. A two-stage stochastic programming formulation is proposed, then the sample average approximation (SAA) method is adapted to solve the small-size problems. To efficiently address the large-scale problems, a genetic algorithm (GA) and a scenario-based heuristic are designed. Numerical experiments on 450 instances are conducted. Computational results show that the scenario-based heuristic outperforms SAA method and GA in terms of solution quality and computational time.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1504247 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:6:p:1706-1723

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2018.1504247

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:57:y:2019:i:6:p:1706-1723