Identification of the to-be-improved product features based on online reviews for product redesign
Lei Zhang,
Xuening Chu and
Deyi Xue
International Journal of Production Research, 2019, vol. 57, issue 8, 2464-2479
Abstract:
Acquisition of customer needs usually serves as the basis for the identification of to-be-improved features for the product redesign process. However, the customer's true needs tend to be non-obvious and are difficult to extract from the data source like interviews or market survey. In the era of Big Data, with the advances in e-commerce, the customer's online review has become one of the most important data source to reveal the insight of customer's preference. In this paper, an online-review-based approach is introduced to identify the to-be-improved product features. The product features and corresponding opinions are extracted and reduced based on the semantic similarity. A structured preference model based on the semantic orientation analysis is constructed. A redesign index is subsequently introduced to measure the priority of redesign for each feature, and a target feature selection model is created to identify the to-be-improved features from candidate features considering engineering cost, redesign lead time and technical risk. A case study for smartphones is developed to demonstrate the effectiveness of the developed approach. In the future study, the online reviews may be combined with the traditional survey data to provide a more effective and reliable identification on the to-be-improved product features.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1521019 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:8:p:2464-2479
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1521019
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().