Modelling, analysis and improvement of an integrated chance-constrained model for level of repair analysis and spare parts supply control
Weimiao Liu,
Kanglin Liu and
Tianhu Deng
International Journal of Production Research, 2020, vol. 58, issue 10, 3090-3109
Abstract:
In traditional practices, maintenance system and spare parts inventory control are usually considered in isolation, resulting in suboptimality. In a military system, the level of repair analysis (LORA) is often employed to help operate its repair networks. In this paper, we consider an integrated LORA and inventory control problem and formulate this problem as a mixed-integer nonlinear programming problem with chance constraints. Two second-order cone constraints are proposed to approximate the chance constraints. Furthermore, we propose an outer approximation (OA) algorithm based on the OA cuts. Extensive numerical results show that the OA algorithm significantly improves the computational efficiency under various types of components and network complexity. Next, we investigate the influence of service level and resource capacity, and propose the findings. Our results indicate that a higher service level leads to steeper costs, more resources, larger storage and heavier repair burdens at operating sites. Moreover, enhancements in resource capacity from the status quo lead to improvements in repairs and shrinkage in discards, bringing direct economic benefits. The insights extend to uncertain settings. It may be initially counterintuitive for many practitioners that demand uncertainty poses relatively subtle impacts.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1629669 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:10:p:3090-3109
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1629669
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().