EconPapers    
Economics at your fingertips  
 

Workload control and optimised order release: an assessment by simulation

Nuno O. Fernandes, Matthias Thürer, Tatiana M. Pinho, Pedro Torres and Sílvio Carmo-Silva

International Journal of Production Research, 2020, vol. 58, issue 10, 3180-3193

Abstract: An important scheduling function of manufacturing systems is controlled order release. While there exists a broad literature on order release, reported release procedures typically use simple sequencing rules and greedy heuristics to determine which jobs to select for release. While this is appealing due to its simplicity, its adequateness has recently been questioned. In response, this study uses an integer linear programming model to select orders for release to the shop floor. Using simulation, we show that optimisation has the potential to improve performance compared to ‘classical’ release based on pool sequencing rules. However, in order to also outperform more powerful pool sequencing rules, load balancing and timing must be considered at release. Existing optimisation-based release methods emphasise load balancing in periods when jobs are on time. In line with recent advances in Workload Control theory, we show that a better percentage tardy performance can be achieved by only emphasising load balancing when many jobs are urgent. However, counterintuitively, emphasising urgency in underload periods leads to higher mean tardiness. Compared to previous literature we further highlight that continuous optimisation-based release outperforms periodic optimisation-based release. This has important implications on how optimised-based release should be designed.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1630769 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:10:p:3180-3193

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1630769

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:10:p:3180-3193