EconPapers    
Economics at your fingertips  
 

A rolling horizon simulation approach for managing demand with lead time variability

Francisco Campuzano-Bolarín, Josefa Mula, Manuel Díaz-Madroñero and Álvar-Ginés Legaz-Aparicio

International Journal of Production Research, 2020, vol. 58, issue 12, 3800-3820

Abstract: This paper proposes a rolling horizon (RH) approach to deal with management problems under dynamic demand in planning horizons with variable lead times using system dynamics (SD) simulation. Thus, the nature of dynamic RH solutions entails no inconveniences to contemplate planning horizons with unpredictable demands. This is mainly because information is periodically updated and replanning is done in time. Therefore, inventory and logistic costs may be lower. For the first time, an RH is applied for demand management with variable lead times along with SD simulation models, which allowed the use of lot-sizing techniques to be evaluated (Wagner-Whitin and Silver-Meal). The basic scenario is based on a real-world example from an automotive single-level SC composed of a first-tier supplier and a car assembler that contemplates uncertain demands while planning the RH and 216 subscenarios by modifying constant and variable lead times, holding costs and order costs, combined with lot-sizing techniques. Twenty-eight more replications comprising 504 new subscenarios with variable lead times are generated to represent a relative variation coefficient of the initial demand. We conclude that our RH simulation approach, along with lot-sizing techniques, can generate more sustainable planning results in total costs, fill rates and bullwhip effect terms.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1634849 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:12:p:3800-3820

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1634849

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:12:p:3800-3820