A method combining rules with genetic algorithm for minimizing makespan on a batch processing machine with preventive maintenance
Jingying Huang,
Liya Wang and
Zhibin Jiang
International Journal of Production Research, 2020, vol. 58, issue 13, 4086-4102
Abstract:
This paper considers the problem of minimising makespan on a single batch processing machine with flexible periodic preventive maintenance. This problem combines two sub-problems, scheduling on a batch processing machine with jobs’ release dates considered and arranging the preventive maintenance activities on a batch processing machine. The preventive maintenance activities are flexible but the maximum continuous working time of the machine, which is allowed, is determined. A mathematical model for integrating flexible periodic preventive maintenance into batch processing machine problem is proposed, in which the grouping of jobs with incompatible job families, the starting time of batches and the preventive maintenance activities are optimised simultaneously. A method combining rules with the genetic algorithm is proposed to solve this model, in which a batching rule is proposed to group jobs with incompatible job families into batches and a modified genetic algorithm is proposed to schedule batches and arrange preventive maintenance activities. The computational results indicate the method is effective under practical problem sizes. In addition, the influences of jobs’ parameters on the performance of the method are analyzed, such as the number of jobs, the number of job families, jobs’ processing time and jobs’ release time.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1641643 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:13:p:4086-4102
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1641643
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().