An optimal integrated lot sizing and maintenance strategy for multi-machines system with energy consumption
Zied Hajej and
Nidhal Rezg
International Journal of Production Research, 2020, vol. 58, issue 14, 4450-4470
Abstract:
This paper proposes an integrated model for multi-machines dynamic lot sizing aiming to produce a single item, considering the energy consumption during the production horizon. The objective is to find, firstly, the optimal lot size as well as the number of machines that satisfy a random demand under given service level and secondly, maintenance plan depended to production planning to minimise the total production, energy and maintenance costs. In fact, the problem of energy consumption is one of the most evoked topics especially with the decision of many governments to reduce theirs (For example France is willing to reduce the total consumption by 20% by 2020). The keys of this study are to consider, firstly, the correlation between the forecasting of demand, the variation of the working machines as well as their production rates under energy constraint and secondly the correlation between the production cadences and the maintenance strategy of all machines.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1654630 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:14:p:4450-4470
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2019.1654630
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().