Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail
Sushil Punia,
Konstantinos Nikolopoulos (),
Surya Prakash Singh,
Jitendra K. Madaan and
Konstantia Litsiou
International Journal of Production Research, 2020, vol. 58, issue 16, 4964-4979
Abstract:
This paper proposes a novel forecasting method that combines the deep learning method – long short-term memory (LSTM) networks and random forest (RF). The proposed method can model complex relationships of both temporal and regression type which gives it an edge in accuracy over other forecasting methods. We evaluated the new method on a real-world multivariate dataset from a multi-channel retailer. We benchmark the forecasting performance of the new proposition against neural networks, multiple regression, ARIMAX, LSTM networks, and RF. We employed forecasting performance metrics to measure bias, accuracy, and variance, and the empirical evidence suggests that the new proposition is (statistically) significantly better. Furthermore, our method ranks the explanatory variables in terms of their relative importance. The empirical evaluations are replicated for longer forecasting horizons, and online and offline channels and the same conclusions hold; thus, advocating for the robustness of our forecasting proposition as well as the suitability in multi-channel retail demand forecasting.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1735666 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:16:p:4964-4979
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1735666
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().